PAGE
1

Chapter 26: Enhanced Data Models for Advanced Applications

CHAPTER 26: ENHANCED DATA MODELS FOR ADVANCED APPLICATIONS

Answers to Selected Exercises

26.34 - Consider the COMPANY database described in Figure 3.6. Using the syntax of Oracle triggers, write active rules to do the following:

(a) Whenever an employee’s project assignments are changed, check if the total hours per week spent on the employee’s projects are less than 30 or greater than 40; if so, notify the employee’s direct supervisor.

(b) Whenever an EMPLOYEE is deleted, delete the PROJECT tuples and DEPENDENT

tuples related to that employee, and if the employee is managing a department or supervising any employees, set the MGRSSN for that department to null and set the SUPERSSN for those employees to null.

Answer:

(a) We assume that a procedure TELL_SUPERVISOR(ARGSSN) has been created. This

procedure looks for an employee whose SSN matches the procedure’s AGRSSN

argument and it notifies the supervisor of that employee.

CREATE TRIGGER INFORM_SUPERVISOR_ABOUT_HOURS

AFTER UPDATE OF HOURS ON WORKS_ON

FOR EACH ROW

WHEN ((SELECT SUM(HOURS)

FROM WORKS_ON

WHERE ESSN = NEW.ESSN) < 30

OR

(SELECT SUM(HOURS)

FROM WORKS_ON

WHERE ESSN = NEW.ESSN) > 40)

TELL_SUPERVISOR (NEW.ESSN);

(b) CREATE TRIGGER DELETE_IN_CASCADE

AFTER DELETE ON EMPLOYEE

FOR EACH ROW

BEGIN

DELETE FROM WORKS_ON

WHERE ESSN = OLD.SSN;

DELETE FROM DEPENDENT

WHERE ESSN = OLD.SSN;

UPDATE EMPLOYE

SET SUPERSSN = ‘null’

WHERE SUPERSSN = OLD.SSN;

END;

26.35 - Repeat 26.34 but use the syntax of STARBURST active rules.

Answer:

(a) We assume that a procedure TELL_SUPERVISOR(ARGSSNS) has been created.

This procedure looks for employees whose SSN matches the social security numbers

passed by the procedure’s AGRSSNS argument and it notifies supervisors of those

employees.

CREATE RULE INFORM_SUPERVISOR_ABOUT_HOURS ON WORKS_ON

WHEN UPDATED (HOURS)

THEN TELL_SUPERVISOR (SELECT DISTINCT ESSN FROM

WORKS_ON AS W WHERE

((SELECT SUM(HOURS) FROM WORKS_ON AS R

WHERE W.ESSN = R.ESSN) < 30)

OR

(SELECT SUM(HOURS) FROM WORKS_ON AS R

WHERE W.ESSN = R.ESSN) > 40))

AND

W.ESSN IN (SELECT ESSN FROM NEWUPDATED);

(b)

CREATE RULE DELETE_IN_CASCADE ON EMPLOYEE

WHEN DELETED

THEN DELETE FROM WORKS_ON AS W

WHERE W.ESSN IN (SELECT ESSN FROM DELETED AS D

WHERE D.ESSN = W.ESSN);

DELETE FROM DEPENDENT AS P

WHERE P.ESSN IN (SELECT ESSN FROM DELETED AS D

WHERE D.ESSN = P.ESSN);

UPDATE EMPLOYEE AS E

SET E.SUPERSSN = ‘null’;

WHERE E.SSN IN (SELECT ESSN FROM DELETED AS D

WHERE D.ESSN = E.ESSN);

26.36 - Consider the relational schema shown in Figure 26.18. Write active rules for keeping the SUM_COMMISSIONS attribute of SALES_PERSON equal to the sum of the COMMISSION attribute in SALES for each sales person. Your rules should also check if the SUM_COMMISSIONS exceeds 100000; if it does, call a procedure NOTIFY_MANAGER(S_ID). Write both statement-level rules in STARBURST notation and row-level rules in Oracle.
Answer:

Oracle notation rules:

CREATE TRIGGER KEEP_EM_SAME

AFTER INSERT OR UPDATE OF COMMISION ON SALES

FOR EACH ROW

UPDATE SALES_PERSON

SET SUM_COMISSIONS = (SELECT SUM (COMISSION)

FROM SALES

WHERE S_ID = NEW.S_ID);

CREATE TRIGGER NOTIFY_MANAGEMENT

AFTER INSERT OR UPDATE OF SUM_COMISSIONS OF SALES_PERSON

FOR EACH ROW

WHEN ((SELECT SUM(COMISSION)

FROM SALES_PERSON

WHERE SALES_PERSON_ID = NEW.SALES_PERSON_ID) >

100000

NOTIFY_MANAGER(NEW.SALES_PERSON_ID);

Starburst notation rules:

CREATE RULE KEEP_EM_SAME ON SALES

WHEN INSERTED OR UPDATED(COMISSION)

THEN UPDATE SALES_PERSON AS S

SET S.SUM_COMISSIONS = (SELECT SUM(COMISSIONS)

FROM SALES AS L

WHERE S.S_ID = L.S_ID)

WHERE S.SALESPERSON_ID IN ((SELECT S_ID FROM UPDATED)

OR (SELECT S_ID FROM INSERTED));

CREATE RULE NOTIFY_MANAGEMENT ON SALES_PERSON

WHEN INSERTED OR UPDATED(SUM_COMISSIONS)

THEN NOTIFY_MANAGER(SELECT SALESPERSON_ID

FROM SALES_PERSON AS S

WHERE S.SUM_COMISSIONS > 100000)

AND

S.SALESPERSON_ID IN

((SELECT SALESPERSON_ID FROM

UPDATED)

OR (SELECT SALESPERSON_ID FROM

INSERTED)));

We assumed that there would be no deletions of sales. If deletion of sales were a

possibility, we would simply enhance the above rules to accommodate the delete option as

well.

26.37 - Consider the UNIVERSITY EER schema of Figure 8.10. Write some rules (in English) that could be implemented via active rules to enforce some common integrity constraints that you think are relevant to this application.

Answer:

RULE 1: Every time a graduate student receives a grade of C of lower, notify his or

her advisor.

RULE 2: When a faculty member becomes a department chair, raise her or his salary

15%.

RULE 3: If a student changes his or her major, delete all of his or her minors, and

notify the student to sign up for minors again.

26.38 - Discuss which of the updates that created each of the tuples shown in Figure 26.9 were applied retroactively and which were applied proactively.

Answer:

- V1, V6, V8, V9, and V11 are all products of proactive updates, because their TST occurred

before their

VST.

- V2, V3, V5, V7, and V10 are all products of retroactive updates, because their TST

occurred after their

VST.

26.39 – 26.44: No solutions provided.

PAGE
ScholarStock

