Chapter 3 Solutions

1. Physical Layer:

10Base-T
IEEE
Data Link Layer

IEEE 802.3
IEEE
Network Layer

IP

IETF
Transport Layer

UDP

IETF
Application Layer
SNMP

IETF

Figure for Exercise 2

Vendor-specific NMS has detailed information about the vendor's components. Hence, it is better suited to do configuration management and detailed trouble shooting in fault management, such as hardware board failure.
General purpose NMS, such as HP OpenView, can monitor several vendors' components and do an overall fault monitoring. In addition, intelligence is built into the system to localize the fault.

Figure for Exercise 3

Spectrum and CiscoWorks behave as agents to MOM (HP OpenView) as well as managers to the managed components. For unified presentation, they utilize the user interface of HP OpenView

2. A database of an NMS is a physical database containing the network objects and values. It is implemented using any proprietary database software.
MIB is a virtual database that is used by network management and agent applications to exchange information about the network objects. It has a hierarchical structure and the schema of the MIB is compiled into the management and agent management software.

3.
(i) Compile the MIB(s) of the new components on the existing NMS.
(ii) Assign IP addresses (instances of managed objects) to the new components. Also, configure them on the network to communicate with the existing NMS.
(iii) Configure the new NMS for configuration management and detailed fault management.

4. (a)
ASN.1 Structure:DaysOfWeek ::= SEQUENCE {

day1

VisibleString

day2

VisbleString

…

day7

VisibleString

(b)
ASN.1 record value:

day1

"Sunday"

day2

"Monday"

…

7. day7

"Saturday"

8. daysOfWeek

ENUMERATED ::=

{

sunday
(0)

monday
(1)

tuesday
(2)

wednesday
(3)

thursday
(4)

friday

(5)

saturday
(6)

9.

}

(a)
(a) Informal Record Structure
Name

Mani M. Subramanian
Address

1652 Harts Mill Road
City

Atlanta
State

GA
Zip Code

30319
(b) ASN.1 Structure:

MyAddress ::= [APPLICATION 0] IMPLICIT {

name

Name

address
Address

city [0]

VisibleString

State
[1]
VisibleString

zip [2]

INTEGER

}

Name ::= SEQUENCE {

first

VisbleString

middle

VisibleSring DEFAULT { }

last

VisibleString

}

Address ::= [APPLICATION 1] IMPLICIT SEQUENCE {

number
INTEGER

street

VisibleString

(b)
}

(c) ASN.1 Record value:

{

{ first
"Mani",

 middle
"M',

 last
"Subramanian" },

{ number
1652,

 street
"Harts Mill Road" },

 city
"Atlanta",

 state
"GA",

 zip
30319

10. Correct solutions: 1 and 3

(a) List: SET {<type1>, <type2>,…}
Ordered list: SEQUENCE {<type1>, <type2>,…}

(b) Data types in SET are distinctly different and could be transmitted in any order
Data types in SEQUENCE need not be different from each other, but should be transmitted in the order in which the data is inputted.

11. List construction is done using SET and SEQUENCE and is used when data types need to be grouped. Repetitive construction is done using SET OF and SEQUENCE OF and is used when grouped data types are to be defined as an array or a table. The rules for ordering of data are the same as for SET and SEQUENCE.

danceGroup
DanceGroup ::= SET OF { Couple }

Couple ::= SET { Male, Female }

male
VisibleString

female VisibleString

(a) RandomList ::= SET OF StudentInfo

 StudentInfo ::= SEQUENCE {

 name VisibleString

 male BOOLEAN

 height INTEGER }

 }

Record: {

 {"Adam", TRUE, 65 },

 {"Chang"' TRUE, 63 },

 ...

 {"Beth", FALSE, 68 },

 ...

 }

(b) AlphabatizedList ::= SEQUENCE OF StudentInfo

Record: {

 { "Adam", TRUE, 65 },

 { "Beth", FALSE, 68 },

 ...

 { "Ho", FALSE, 64 }

 }

(c) IncreasingHeight ::= SEQUENCE OF StudentInfo

Record: {

 { "Dipa", FALSE, 59 },

 { "Faye", FALSE, 61 },

 ...

 }

(d) Representative ::= {

 {"Adam", TRUE, 65 } | { "Chang", TRUE, 63 } | ...

or

 Representative ::= CHOICE {

 student1 Student1

 student2 Student2

 ...

 student8 Student8

 }

 Student1 ::= SEQUENCE { VisbleString, BOOLEAN, INTEGER }

Record: {"Adam", TRUE, 65 }

 Student2 ::= SEQUENCE { VisbleString, BOOLEAN, INTEGER }

Record: {"Chang", TRUE, 63 }

(e) Group1 ::= SET OF StudentInfo

Record:
{

{"Adam", TRUE, 65 },

{ "Chang", TRUE, 63 },

….

}

 Group2 ::= SET OF StudentInfo

Record:
{

{"Beth", FALSE, 68},

{"dipa", FALSE, 59 },

…

}

13. 0100010 00000001 00000011

14. Configuration Management: Set the IP address and system description identify components, set up subnets, links to external network, etc.
Fault Management: Component failures, network alarms, etc.
Performance Management: Traffic on the LANs, packet loss on components and links, traffic delay, ..
Security Management: Set up security parameters, password and other security administration, security break-ins, etc.
Account Management: Utilization of the network resources by different users.
5
3-5

